Angiotensin II-induced inotropism requires an endocardial endothelium-nitric oxide mechanism in the in-vitro heart of Anguilla anguilla.

نویسندگان

  • Sandra Imbrogno
  • Maria Carmela Cerra
  • Bruno Tota
چکیده

Using an isolated working heart preparation we show that angiotensin II (ANG II), at concentrations of 10(-10)-10(-7) mol l(-1), elicits negative chronotropism and inotropism in the freshwater eel Anguilla anguilla. The negative inotropism was insensitive to losartan and CGP42112 (AT(1) and AT(2) ANG II receptor antagonists, respectively), and was abrogated by the AT(1) receptor antagonist CV11974, the G protein blocker pertussis toxin (PTx) and the muscarinic antagonist atropine. In contrast, it was not affected by the adrenoceptor antagonists propanolol, sotalol and phentolamine. Using donors (L-arginine) and inhibitors [N(G)-monomethyl-(L)-arginine (L-NMMA), L-N(5)(1-iminoethyl)ornithine ((L)-NIO)] of nitric oxide synthase (NOS), and haemoglobin as NO scavenger, we demonstrate that NO signalling is involved in ANG II-mediated inotropism. Pretreatment with Triton X-100, a detergent that damages the endocardial endothelium (EE), or with 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ), a specific inhibitor of soluble guanylate cyclase, or with the cGMP-activated protein kinase (PKG) inhibitor KT5328, abolished ANG II-mediated inotropism. Thus, ANG II-mediated inotropism occurs via an EE-NO-cGMP-PKG mechanism. ANG II did not affect the mechanical performance influenced by preload changes (i.e. the Frank-Starling response), which in the eel heart is modulated by NO. This EE-paracrine-mediated cardio-suppressive action of endoluminal ANG II suggests that the hormone plays an important intracardiac role in the fish heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide modulates cardiac performance in the heart of Anguilla anguilla.

Nothing is known about the effects of nitric oxide (NO) on cardiac performance in fish. Using an in vitro working heart preparation that generates physiological values of output pressure, cardiac output and ventricular work and power, we assessed the effects of NO on the cardiac performance of the eel Anguilla anguilla. We examined basal cardiac performance (at constant preload, afterload and h...

متن کامل

Beta3-adrenoceptor in the eel (Anguilla anguilla) heart: negative inotropy and NO-cGMP-dependent mechanism.

Neuroendocrine regulation of cardiac function involves a population of three types of beta-adrenoceptors (ARs). In various mammalian species, beta1- and beta2-AR stimulation produces an increase in contractility; whereas beta3-AR activation mediates negative inotropic effects. At the moment, nothing is known about the physiological role of beta3-AR in fish. Using an isolated working heart prepa...

متن کامل

Phospholamban S-nitrosylation modulates Starling response in fish heart.

The Frank-Starling mechanism is a fundamental property of the vertebrate heart, which allows the myocardium to respond to increased filling pressure with a more vigorous contraction of its lengthened fibres. In mammals, myocardial stretch increases cardiac nitric oxide (NO) release from both vascular endothelium and cardiomyocytes. This facilitates myocardial relaxation and ventricular diastoli...

متن کامل

The catecholamine release-inhibitory peptide catestatin (chromogranin A344-363) modulates myocardial function in fish.

Catestatin (CST), the 21-amino acid, cationic and hydrophobic peptide proteolytically derived from the ubiquitous chromogranin A (CgA), is an endogenous inhibitor of catecholamine release, a potent vasodilator in vivo and an anti-hypertensive agent in mammals, including humans. Recently, we discovered that CST also functions as an important negative modulator of heart performance in frog and ra...

متن کامل

Effect of Angiotensin II on Blood Flow in Acute and Chronically Inflamed Knee Joints of Rabbits: The Role of Nitric Oxide

Background: Angiotensin converting enzyme (ACE) upregulation in stromal cells of joints affected by rheumatoid arthritis may lead to higher tissue angiotensin II that is a vasoconstrictor and mitogen factor. To date, the role of angiotensin II on regulating blood flow in inflamed joints has not been studied. Methods: Acute and chronic joint inflammation was induced in rabbits by intra-articular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2003